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C-XEBYSHEV SERIES SOLUTION OF NONLINEAR ORDINARY 

DIFFERENTIAL EQUATIONS: INITIAL-VALUE 

PROBLEMS 

By Kin L. Lee and Paul F. Byrd 

Ames Research Center 

SUMMARY 

The approximate Chebyshev series solution of nonlinear ordinary 
differential equations based on Picard iteration is discussed. 
algorithms are provided for the numerical solution of initial-value problems 
involving (a) a system of n first-order nonlinear differential equations, 
and (b) an nth-order nonlinear differential equation. Methods to accelerate 
the convergence of the iterative procedures are also proposed, 
subroutines for the algorithms with options for accelerating convergence are 
given. 

Detailed 

FORTRAN IV 

INTRODUCTION 

Chebyshev series have been used for obtaining efficient numerical 
solution to various problems, particularly in approximating functions and in 
solving certain linear differential equations and Fredholm integral equations 
(refs. 1 and 2 ) .  
it very nearly satisfies the condition for optimal polynomial approximation. 

The explicit representation of the solution to a nonlinear ordinary 
differential equation by some economical approximation such as a Chebyshev 
series is particularly desirable in practice if the solution is part of a 
larger computation and is repeatedly required for the generation of other 
relevant information. 
solution over the relevant range of the independent variable, the Chebyshev 
series solution of ordinary initial-value problems has other desirable fea- 
tures that may make it preferable to discrete variable methods (i.e., Runge 
Kutta and various predictor-corrector procedures). First, the maximum error 
over the entire interval of integration can be readily and closely estimated 
by inspection of the coefficients. Second, since the integration can usually 
be effected over the entire interval or a small number of subintervals, the 
chances for propagation of round-off error is small. The degree M of the I 

approximating polynomial as well as the interval of integration may be varied 
as subroutine parameters to obtain any degree of accuracy. These features are 
lacking in most discrete variable methods. A clear disadvantage of the algo- . 
rithms for Chebyshev series integration of nonlinear differential equations is 
the time-consuming feature of their interative construction. However, in the 
case of a single 
Chebyshev series method in conjunction with the method of accelerating conver- 
gence may compare favorably with discrete variable methods in computing time. 

The usefulness of the Chebyshev series lies in the fact that 

Besides providing an explicit representation of the 

nth-order differential equation, the application of the 



Approximate Chebyshev series solution for nonlinear differential 
equations was first proposed by Clenshaw and Norton (ref. 3 ) .  The approximate 
solution, found by Picard iteration, is applied to single first and second- 
order differential equations. 
Chebyshev procedures based on Newton iteration to solve the same equations. 

In a later paper (ref. 4), Norton proposed 

The principal objective of this report is to give detailed algorithms 
based on Picard iteration for obtaining numerical solutions, in the form of an 
approximate Chebyshev series, of initial-value problems involving (a) a system 
of n first-order nonlinear differential equations, and (b) an nth-order non- 
linear differential equation. These algorithms have been programmed as 
FORTRAN IV subroutines. 
appendix C. 

The documentation of the subroutines is provided in 

A basic difference between algorithms presented here and those of 
Clenshaw and Norton is the choice of the interpolating polynomial. 

basic ideas and tools of polynomial approximation are discussed. 

Our pref- 
.erence is based on the discussion of error given in appendix B where certain 

Although Chebyshev procedures based on Newton iteration usually seem to 
converge faster than those based on Picard, they are not easily extended as 
general algorithms to solve higher order or coupled differential equations. 
For this reason, no discussion on Newton's method is given here. 
sate for the slower convergence of Picard iteration, two methods are proposed 
in this report to accelerate the convergence of the above algorithms. 
methods are included as options in the subroutines mentioned earlier. 

To compen- 

The two 

A discussion on convergence via an example is given to provide insight 
into the behavior and application of the algorithms of this report. 

A summary is given in appendix A on several fundamental properties and 
tools of the Chebyshev polynomial. 

SYMBOLS 

*k Chebyshev coefficients of the function $(t) (see eq. (B11)) 

coefficients of the interpolating polynomial PN+l(t)(see eqs. 
(B23) and (B27)) 

b:'), bL1) coefficients of the approximating polynomials for $j (t) and 4; (t) 
(see eq. (14)) 

B"), B") coefficients of the approximating polynomials for Qj+, (t) and 
k k 

(t) (see eqs. (16) and (20)) 4;+1 

2 



(*I b!’) coefficients of the approximating polynomials for c p i ,  (t) and bi,k’ i,k * 

(t) (see eq. (46)) ‘i, j 

(O) (l) coefficients of the approximating polynomials for (t) and 
j+l 

1 (t) (see eq. (47)) +i, j+l 
Bi,k’ Bi,k 

Ci) (t) (see eqs. 9 coefficients of the approximating polynomial fo r  
(67) and (68)) 

coefficients of the approximating polynomial for cpj+l (i) (t) (see eqs. 
(67) and (68)) 

the set of polynomials of maximum degree n (see eq. (B2)) Dn 

EN (f) the minimax of f (x) (see eq. (B3)) 

p (XI a polynomial in x 

pk a polynomial in x of degree k 

SN (t) the first N+1 terms of the Chebyshev series of $(t) (see eq. 
03131 1 

Tk Ct> the Chebyshev polynomial of the first kind of degree k (see eq. 
(All 1 

($1 the maximum error of SN(t) (see eq. (B14)) 

(PI (t) ‘i, j the jth approximation to cpi (PI (t) 

cpy (t) the j th approximation to cp(i) (t) 

E the convergence criterion or prescribed convergence error of 
algorithms I and I1 

G5 approximately equal to, as p,(t) cp (t) 

3 



PRELIMINARY ANALYSIS 

Chebyshev Series Integration of the First-Order 
Differential Equation 

The basic ideas and tools used in the construction of algorithms for the 
approximate Chebyshev series integration of nonlinear differential equations 
can best be discussed and understood via the first-order differential equation 

- =  dF f(x,F) 
dx 

having the initial condition 

(Algorithms for a system of first-order differential equations and an nth- 
order differential equation are presented in the following sections as algo- 
rithms I and I1 in a form suitable for coding by means of ALGOL, FORTRAN or 
similar computer languages.) 

Consider the sequence of functions {Fj(x)) generated by a process 
attributed to Picard: 

( x )  = rl + jz f(s,Fj)ds (j = 0,1, . . .) Fj+l (3) 

If f(x,F) is continuous and the partial derivative af/aF is bounded in a 
region including the point (a,rl), the above sequence of functions is guaran- 
teed by a theorem of Picard to converge to a function 
equations (1) and (2) in a neighborhood Ix - a1 5 h.  
then without loss of generality we can consider the solution of the differen- 
tial equation 

F(X) satisfying 
If this is the case, 

with 

+(-1) = rl 

by means of the iterative procedure involving the equations 

4 



+&I = rl (8) 

where 
and (6).' 

$.(t) converges uniformly on [-1,1] to the solution of equations (5) 

Although @(t,4.), for a fixed j, is an explicit function of t, the 
integral of (7) is difficult to obtain in practice. 
can be accurately approximated by a polynomial P(t), then +j+l(t) can be 
evaluated by integrating P(t) term by term. From the point of view of effi- 
cient computation, the coefficients of such a polynomial should by readily 
obtainable by a finite algorithm. Also, for a fixed degree M, this polynomial 
should be the best possible in the sense of least maximum error (defined by 
eq. (B2)). Since the computation of the best approximating polynomial is, in 
general, a nonlinear iterative procedure, the use of it as an effective tool. 
in the approximation of $(t,$-) must be precluded. Clenshaw (ref. 3) pro- 
posed the use of the interpolaging polynomial1 

1 However, if @[t,4j(t)] 

k= O 

where Tk(t) are Chebyshev polynomials defined by (see also appendix A) 

Tk(t) = cos(k cos" t), - l s t < l  (10) 

with the points of interpolation 

(11) 
r n  
bl t, = cos - (r = 0,1, . . .,M) 

where TM(t) has M + 1 extrema T (t ) = (-l)r. M r .  
Here, however, we make use of 
which is formed by truncating the last term of the interpolating polynomial 

QN(t), a modified interpolating polynomial, 

having 

(13) r n  
M+ 1 (r = 0,1, . , .,M+l) tr = cos - 

as the points of interpolation. 
T~+l(t) has extrema, T~+~(tr) = (-l)r. 
maximum error for 

These are also the M+2 points where 
Analysis in appendix B shows that the 

&(t) as an approximating polynomial for sufficiently large 

lA double prime over the summation sign*indicates that the first and last 
terms are to be halved, while a single prime indicates that only the first 
term is to be halved. 
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M i s  one ha l f  t h a t  of PM(t). Numerich1 examples of Frazer and Hart ( r e f .  5) 
a l s o  show t h a t  
For t h i s  reason, QM(t) i s  a l s o  ca l l ed  a near- 

QM(t) c lose ly  approximate t h e  bes t  approximating polynomial. 

Now suppose we assume t h a t  each member of t he  
{@$ ( t ) )  can be accurately represented by pol  
respect ively.  Assume a l so  t h a t  a t  t he  j t h  i t e r a t i o  
known and of  t he  form 

M+ 1 
' b i o ) T k ( t )  

and 

'then an approximate chebyshev s e r i e s  so lu t ion  f o r  equation (5) can be obtained 
as follows: 

We approximate f i rs t  @i+1 ( t )  = + [ t , @ j  ( t ) ]  by the near-best approximating 
polynomial QM(t) t o  obtain 

M 

J l l l t t+j( t ) l  ' Bil)Tk(t)  
k= 0 

where B i l l ,  according t o  equation (B27) is  

r= 0 

with 

rr 
M+ L tr = cos - (17) 

Since Bk 
evaluated f o r  a f ixed  k by means of recurrence formula (A23). Accordingly, 

i s  a l i n e a r  combination of t h e  form (A22), it can r ead i ly  be 

1 M - 2, . . . , l )  

6 



Denote the integral of equation (16) by the (M+l)st degree polynomial 

Upon performing the indicated integration with the aid of equation (A9) and 
equating coefficients of Tk(t), one obtains 

(The same results can also be obtained if equation (B19) is applied.) The 
constant of integration (1/2)Bio) remains to be determined. It can be 
computed if one notes that 

and by equation (A31) that 

k= O 

Thus 

This completes one iteration. If 

rescribed convergence error, we are through. Otherwise, 
is " a  where E: 

rep,lace each bkp) by Blp) (p = 0,l) and initiate another solution., 

7 



The entire iterative process can be started by setting (po(t) E TI, that 
is, by taking bo 
initial approximation sometimes can be made by utilizing knowledge of 
for example, if $(t,(p) involves only the dependent variable (p. 

= 211 and bLo) = 0, for k = 1,2, . . . ,M+1. A better 

$(t,(p), 

Accuracy of Solution 

When the condition (24) is met, we are interested in how well the 
approximate solution satisfies the given differential equation. 
nomial approximations (15) are substituted into equation (5), one obtains, 
upon taking absolute values, 

If the poly- 

But 

by condition (24). Let 

/ 

It then follows from equation (B36) that 
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Consequently, we see by equations (25 and (26) t h a t  

Hence i f  bk') - Bk(l)I < E f o r  each k and i f  M i s  s u f f i c i e n t l y  la rge ,  t he  

E' b io )T  ( t ) ,  and, a f o r t i o r i ,  E' Bio)Tk(t) ,  w i l l  approximate so lu t ion  
k= 0 k= o ,L 

s a t i s f y  the  given d i f f e r e n t i a l  equation with an e r r o r  c lose  t o  (M + 1 ) ~ .  
p rac t i ce ,  we say t h a t  M 
no change g rea t e r  than E i n  t h e  coe f f i c i en t s .  Also,  s ince  the  Chebyshev 
s e r i e s  is  unique, when (M + 1 ) ~  is made small by an appropriate  choice of 

and M, the  coe f f i c i en t s  BLor of t h e  f i n i t e  series w i l l  c lose ly  approximate 

those of t he  Chebyshev coe f f i c i en t s  Ak lo) of the  so lu t ion  (see eq. ( B 1 1 ) .  

M+ 1 I 
k 

In 
is " su f f i c i en t ly  large" when l a rge r  values provide 

E 

Examp 1 e 

To i l l u s t r a t e  t he  accuracy of t h e  above procedure, l e t  us f ind  a 
polynomial approximation f o r  tan[ (1~/8) ( t  + l ) ]  f o r  -1 5 t 5 1 with a maxi- 
mum e r r o r  l e s s  than 0 . 5 ~ 1 0 - ~ .  One can e a s i l y  v e r i f y  t h a t  t he  given function 
satisfies t h e  d i f f e r e n t i a l  equation 

- d(b = ;[1 + ( b 2 ( t ) ] ,  - 1 < t 5 l  d t  

w i t h  

4(-1) = 0 (29) 

Hence, t h e  method given i n  t h i s  sec t ion  i s  appl icable .  

The approximate Chebyshev coe f f i c i en t s  f o r  both the  so lu t ion  and i ts  
der iva t ive  corresponding t o  M = 16 and E = 0.5~10-~O a r e  shown i n  t ab le  I (a ) .  
A t o t a l  of 13 i t e r a t i o n s  were required.  Tabulated values of t he  approximate. 
Chebyshev series corresponding t o  d i s c r e t e  poin ts  of t he  independent var iab le  
a r e  given i n  t a b l e  I (b ) .  
c i e n t l y  la rge  s ince  the  coe f f i c i en t s  corresponding t o  
M > 16 y ie ld  no change g rea t e r  than E .  In view of equation (26),  t h e  approxi- 
mate so lu t ion  must s a t i s f y  t h e  d i f f e r e n t i a l  equation with an e r r o r  bound c lose  
t o  8 . 5 ~ 1 0 - ' ~ .  The same conclusion can be drawn by t h e  examination of t he  coef- 
f i c i e n t s  alone. In fact, s ince  B:~) i s  approximately equal t o  

Numerical r e s u l t s  suggest t h a t  M = 16 i s  s u f f i -  
E = 0 . 5 ~ 1 0 - ~ O  f o r  

(1) 
ak 
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according to equation (B28) and lBLt@L1’l < 1/5 for K 
member of inequality (27) gives us 

7, the right 

1 7 ~  + a17 + 2 2 lak! M 8.7~10’~~ 
k=l8 

A check of the tabulated values of table I(b) with those of Abramowitz and 
Stegun (ref. 6) shows agreement to 10 decimal places, 

TABLE 1.- CHEBYSHEV SERIES APPROXIMATION OF TAN -(t + 1) , (-1 5 t I 1) 

(a) Approximate Chebyshev coefficients E l  - 

k 

0 0.9113043408269388D 00 O.lQ43307398148425D 01 
1 0.4894686436450291D 00 0.1835797842596252D 00 
2 0.4284834890908355D-01 0.6437011085836632D-01 
3 0.1024434335477160D-01 0.1218638862329105D-01 
4 0.1453268753787471D-02 0.2904050729736723D-02 
5 0.2787802534394446D-03 0.5602385929912773D-03 
6 0.4483018228371541D-04 0.1162481953422768D-03 
7 0.7992572697332448D-05 0.2227640558669249D-04 
8 0.1340847727289307D-05 0.4352177579622525D-05 
9 0,2331260728730840D-06 0.8228419500635855D-06 
10 0.3968754154824808D-07 0.1559082679070123D-06 
11 0.68406707906635910-08 0.2909111909862381D-07 
12 0.1170504525821132D-08 0.5413510512413251D-08 
13 0.2011467240884598D-09 0.9990104789166475D-09 
14 0.3447781322812264D-10 0.1836956861132969D-09 
15 0.5912174018325965D-11 0.3363170852921371D-10 
16 0.1050990891537928D-I1 0.6330465563517943D-11 
17 0.1861901636328807D-12 0.0000000000000000D-38 

(b) Function values 

t 

-1.0 0.0000000000000000D-38 
-0.8 0.7870170682457329D-01 
-0.6 0.1583844403245379D 00 
-0.4 0.2400787590801460D 00 
-0.2 0.3249196962328421D 00 
0.0 0.4142135623731530D 00 
0.2 0.5095254494943512D 00 
0.4 0.6128007881399821D 00 
0.6 0.7265425280053249D 00 
0.8 0.8540806854634090D 00 
1.0 0.9999999999998522D 00 

i o  



For economy of computation, note that if N1 < N, then 

(See also eq. (B16)). Thus, in the case of the approximating polynomial of 
the above example, ignoring the last six terms from the finite series results 
in a maximum error of 0.14~10'~. 
degree, polynominal can be used to approximate 
satisfy the maximum error requirement of 0.5~10- 

Hence, an 11th degree instead of a 17th 
gan[ (IT/Q) (1 + t)] and still . 

INTEGRATION OF A SYSTEM OF n FIRST-ORDER DIFFERENTIAL EQUATIONS 

In this section, the basic ideas applied to the construction of an 
approximate Chebyshev series solution for a single first-order differential 
equation are extended to provide an algorithm for the solution of a system of 
n first-mder differential equations. It is given in sufficient detail to 
facilitate computer programming as well as.the discussion of acceleration of 
convergence. 
theorem. 

The basis for the more general algorithm is the following 

Theorem. Let a system of n first-order differential equations be 
defined by 

dF A =  fi(x,F1,F2, L . .,Fn) , dx Ix - a1 5 G o ,  (i = 1,2, . . .,n) . (31) 

with the initial conditions 

Fi(a) = ni , (i = 1,2, , . . ,n) (32) 

Furthermore, let each of the functions 
partial derivatives fi be continuous and have bounded 

in the region 

If 

(35) 

11 



where 

(x,F1 ,F2 ,  . . . ,Fn) 4 
1 

i n  t he  region defined by (34) ,  then the  sequence of n functions 
W 

[ F l y  j (X) ,F2 ,  j (x) ,  . . . ,Fn * (XI)  defined by 
9 7  j = o  

X 
F i , j + l ( x )  = V i  + j a f i ( s , F l , j , F p , j ,  . . . ,Fn , j )ds ,  ( i  = 1 ,2 ,  - . . ,n) (37) 

with 

F i Y o ( x )  5 17. 1 ,  ( i  = 1 , 2 ,  . . . ,n)  (38) 

converges uniformily on ] x  - a1 5 h 
F ~ ( x ) ,  . . ., Fn(x) sa t i s fy ing  equations (31) and (32). (For proof of a s i m i -  
lar  theorem, see  Tenenbaum and Pollard ( r e f .  7 ) ) .  

t o  a unique s e t  of functions of F1 (x) , 

Besides providing an i t e r a t i v e  procedure (eqs. (37) and (38))  f o r  
obtaining a so lu t ion ,  the  above theorem a l so  guarantees an in t e rva l  of conver- 
gence. However, t h e  estimate h i n  equation (35) usual ly  proves t o  be con- 
serva t ive  i f  not d i f f i c u l t  t o  f ind .  
i s  usua l ly  assumed o r  determined by t r ia l  and e r r o r .  

In p rac t i ce ,  the  in t e rva l  of convergence 

Suppose t h a t  t he  system (31) has a unique so lu t ion  Fi(x) 

In order t o  construct  the  Chebyshev series f o r  
( i  = 1,2, . . . ,n )  on a 5 x I: b sa t i s fy ing  the  i n i t i a l  conditions given by 
equation (32). 
t he  change o f  independent var iab le  

with 

F i (x) ,  make 

x = c t  + d,  1 
and 

so t h a t  

2 

b+a 
2 

d = -  

(39) 

Subst i tut ion i n  equations (31) and (32) then y ie lds  

1 2  



The same change of variable for equations (37) and (38) gives the sequence of 
00 

n functions $1 ,j , $2, j , . . . ,On, j defined by I j =o 

and 

$i90(t) ni 5 (i = 1,2, . . .,n) (43) 

which converges uniformly on the closed interval [-1,1] to a set of functions 
$l(t), $2(t), . . ., $,(t) satisfying equations (40 and (41). One also 
obtains by differentiation the equations 

We are now ready to proceed with the algorithm for an approximate 
Chebyshev series solution of n first-order differential equations. 

Algorithm I 

As in the case of a single first-order differential equation, it is 

assumed that the sequences ($1, >$2, j, . . . ,Qn, j and 
j = O  

can be accurately approximated by polynomials of 
I r  

{$:,j>42,j9 1 ’ .  *,$n,j 
j=O 

degree M + 1 and M, respectively. For simplicity of notation, let 

13 



Also, l e t  E be a prescribed convergence e r r o r  between b k , i  and BL;:. The 

approximate solut ion of (40) can be obtained as follows: 

k = 0 , 1 ,  . . . ,  M + l  kn 
M + l  ' 

1. Set  
tk = cos - 

(These are t h e  M + 2 points  where Tm+l (t) assumes i t s  extrema.) 

2 .  Set 

b l o )  = 2ni , ( i  = 1,2, . . . ,n) o , i  

b::; = 0 , ( i  = 1 , 2 ,  . . . ,n; k =  1,2,  . . .,M + 1) 

b$ = 0 , (i = 1 , 2 ,  . . . ,n; k =  0,1, . . . ,M) 
(This is  equivalent t o  t h e  i n i t i a l  approximations 
(i = 1 , 2 ,  . . . , n > ) .  

(pi(t) E n i ,  

3 .  Compute 

('IT ( t  ) ( i  = 1 , 2 ,  . . . , n ;  k = 0 , 1 ,  . . . >M + 1) 
( p i ,  j (tk) = br,i k k ' 

r= o 

4. Compute 

( i  = 1 , 2 ,  . . . ,n;  k =  0,1, a . . ,M + 1) 

5. Compute (by making use of eq. (B27)) 

M+ 1 ._ 
1 1  

1 
(tr)Tr(tk) , ( i  = 1,2, . . ,n; k =  0,1, . . . ,M) 2 (1) = ___ 

Bk, i  M + l  'i, j+i 

(We have here  approximated 9 '  ( t )  by the  Mth degree polynomial i, j + i  
M 

BL1)Tk(t), where according t o  Theorem B5 
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for a sufficiently large M.) 

6. Compute (by eq. (B19)) 

B ( l )  - Bk+l,i (1) 
, (i = 1,2, . . . ,n; k =  1,2, . . ,M) (0) = k-lsi 

Bk, i 2K 

(i = 1,2, . . . ,n) 

7.  Compute’ (using the fact that $i (-1) = ni and eq. (A31)) , j+ i  

k = l  -J 

(We have in this and the above step integrated 

M 
’ (l)T (t) 1 

‘i, j+l (t) = Bk,i k 
k= u 

which results in the (M + 1)st degree polynomial 
M+i . 

+i, j+l (t) = Bk,i (‘IT k (t)) 

8. If ]Bk,i (l) - bk,i (‘I] < E for all k and i, we are through. Otherwise, 

9. Set 

for each k and i and return to step 3.  

(t) S O  for each Note: 
i, step 8 should be bypassed until the second iteration. 

To take into consideration the case when $i,l(t) = I 
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Example I 

A s  an example, we solve the boundary-layer equation 

- d3F + 2F e-(gp+l=O, 
dx 

0 5 x 5 6  

with the initial conditions 

= 1.311937693880 
x= 0 

(48) 

(49) 

using algorithm I with a prescribed convergence error E = 0 . 5 ~ 1 0 - ~ ~ .  

We first rewrite the given differential equation as a system of three 
Let F1 (x) = F(x) , F~(x) = dF/dx, and first-order differential equations. 

F3(x) = d2F/dx2. Equation (48) can then be equivalently written as 

with initial conditions Fl(0) = 0, F2(0) = 0, F3(O) = 1.311937693880. 

We were unable to find a solution to the example by the method of this 

However, we can obtain a solution over subintervals of the given 
section over the entire interval because the iteration process failed to con- 
verge. 
interval. Let the given interval be subdivided by the q + 1 points 

O = x O < x l <  . . . <  x = 6  (50) 9 
On each of the subintervals [X~,~,X,-] (r = 1,2, . . . ,q) the change of 
variable 
rewrite equation (48) as 

Y = ct + d, c = (xr - X ~ - ~ ) / Z ,  d =  (xr + xr-l ) / 2  enables one to 

The solution can then be found for one subinterval at a time. Initial condi- 
tions for each subinterval are the function values of the end points of the 
previous subinterval, except the first where $1 (-1) = F1(0), 42(-1) = F2(0), 
and $3(-1) = F3(O). The approximate Chebyshev coefficients B 
Fl(x) = F(x) for the case with M = 11 and xo = 0, x1 = 1, x2 = 2, . . . , 
xg = 6 are given by table II(a). 
derivatives are not tabulated but may be generated in terms of Bk ( O from 

equation (B19). 

(O) of 
k, 1 

The coefficients for the first and second 

$1 
A tabulation of the values of F(x), dF/dx, and d2F/dx2 
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corresponding to 
indicate that the approximate solution satisfies the differential equation 
with an error bound of the order 0.5~10-~*, since 
10 decimal places for M > 11 (see Preliminary Analysis). 
and second derivatives approach unity and zero (accurate to 10 decimal places), 
respectively. 
determined numerically from the solution of the boundary-value problem 
involving the same differential equation (45) and the boundary values 

x = 0(0.2)6.0 is provided by table II(b). Numerical results 

(O) exhibits no change to 
Note that the first 

Bk,i 

This is because the initial value of the second derivative was 

(See L. Fox (ref. 8) for the numerical solution of boundary-value 
means of initial-value techniques). 

problems by 
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TABLE 11.- APPROXIMATATE CHEBYSHEV SERIES OF EXAMPLE I; 
M = 11 AND E = 0 . 5 ~ 1 0 - ~ ~  

(a) Approximate Chebyshev coefficients of F (x) = F1 (x) 

(0) 
Bk, 1 

0.3892366850285570D 00 
1 0.2510773451273367D 00 
2 0.5149697317862475D-01 
3 -0.4884131498391032D-02 
4 0.9147538219192970D-04 
5 0.1415676089930017D-04 
6 0.4392922674440762D-06 
7 -0.1455950532358585D-06 
8 -0.4849170368489048D-08 
9 0.8282513783615847D-09 

10 0.9882967257068829D-10 
11 -0,6903978861669351D-11 
1 2  -0.8827151972331154D-12 

0 0.1906417059176552D 01 
1 0.4721517772513179D 00 
2 0.9310264019825763D-02 
3 -0.1833951624942309D-02 
4 0.2059970855772206D-03 
5 -0.8457783925547068D-05 
6 -0.8661141518947492D-06 
7 0.1097311409086846D-06 
8 0.3074443225322085D-08 
9 -0.1144396357769898D-08 

10 0.1743676140975036D-10 
11 0.9458996086397773D-11 
1 2  -0.4752447471050794D-12 

0 0.3863311229682918D 01 
1 0.4991658557862458D 00 
2 0.3890170133408291D-03 
3 -0.1226429401112712D-03 
4 0.2723834050810958D-04 
5 -0.4276208831696196D-05 
6 0.4483551620850419D-06 
7 -0.2359560210099267D-07 
8 -0.1071584776352978D-08 
9 0.3086935209765476D-09 

10 -0.1991941542267561D-10 
11 -0.7958215315696075D-12 
1 2  0.2178984230703938D-12 

B ( 0 )  
k ,  1 

0 0.5862202712178695D 01 
1 0.4999948514648397D 00 
2 0.2955377779468674D-05 
3 -0.1245878270158787D-05 
4 0.4005516561512526D-06 
5 -0.1007087050914716D-06 
6 0.2006791017080924D-07 

0 5 x 5 1 7 -0.3171829281200812D-08 3 5 x 5 4 
8 0.3907806881905951D-09 
9 -0.3545559422189501D-10 

10 0.1928744432685055D-11 
11 0.2469520799973746D-13 
1 2  -0.1720633666410817D-13 

0 0.7862196443651593D 01 
1 0.4999999943549484D 00 
2 0.3692652891795766D-08 
3 -0.1878812574654078D-08 
4 0.7638849269566333D-09 
5 -0.2536970874119266D-09 
6 0.7001695230546277D-10 

1 I x 5 2 7 -0.1625416567214393D-10 4 2 x s 5 
8 0.3200698242324569D-11 
9 -0.5361639630217125D-12 

10 0.7642312708592647D-13 
11 -0.9226205658049735D-14 
1 2  0.9246076126956381D-15 

0 0.9862196437121186D 01 
1 0.5000000000008645D 00 
2 0.7747691377346653D-12 
3 -0.4426482328826845D-12 
4 0.1981233464324698D-12 
5 -0.8628422050923251D-13 
6 0.2645800245559826D-13 

2 5 X 5 3 7 -0.9037083251041076D-14 5 5 x 5 6 
8 0.1891137709394048D-14 
9 -0.5728442411781188D-15 

10 0.7540264708912517D-16 
11 -0.2460153293203471D-16 
12  0.2698458740408366D-17 
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X 

TABLE 11 . -  APPROXIMATE CHEBYSHEV SERIES OF EXAMPLE I; 
M = 11 AND E = 0.5~10-~~ 

(b) Values of t he  approximate so lu t ion  and t h e  first two der iva t ives  
for x = 0(0.2)6.0 

dF 
dx 
- d2F 

dx2 
- 

0.0 0.1387778780781446D-16 0.0000000000000000D-38 0.1311937693880000D 
0.2 0.2490564860649391D-01 0.2423943538939113D 
0.4 0.9430258133873859D-01 0.4449866213741513D 
0.6 
0.8 

1.0 
1.2 
1.4 
1.6 
1.8 

2.0 
2.2 
2.4 
2.6 
2.8 

3.0 
3.2 
3.4 
3.6 
3.8 

4.0 
4.2 
4.4 
4.6 
4.8 

5.0 
5.2 
5.4 
5.6 
5.8 
6.0 

0.2003061101255821D 
0.3353391239337122D 

0.4924144512322781D 
0.6654189143037998D 
0.8493213259061367D 
0.1040250891316518D 
0.1235435703128323D 

0.1433033404109585D 
0.1631909451187109D 
0.1831417188863473D 
0.2031215672918176D 
0.2231138667864316D 

0.2431111230808782D 
0.2631102124524431D 
0.2831099311572934D 
0.3031098503447131D 
0.3231098287668217D 

0.3431098234149990D 
0.3631098221826554D 
0.3831098219193559D 
0.4031098218672120D 
0.4231098218576820D 

0.4431098218561269D 
0.4631098218559299D 
0.4831098218559648D 
0.5031098218560366D 
0.5231098218561158D 
0.543i0982i8~6191711 

00 
00 

00 
00 
00 
01 
01 

01 
01 
01 
01 
01 

01 
01 
01 
01 
01 

01 
01 
01 
01 
01 

01 
01 
01 
01 
01 
01 

0.6087099439315713D 
0.7357728939772173D 

0.8298680510454096D 
0.8959772698742670D 
0.9398267343977971D 
0.9671738223714611D 
0.9831581570755136D 

0.9918921621644430D 
0.9963447565741975D 
0.9984593547253356D 
0.9993937528203719D 
0.9997775510127270D 

0.9999239691430687D 
0.9999758156979835D 
0.9999928465126406D 
0.9999980337347978D 
0.9999994980713486D 

0.9999998810724133D 
0.9999999738584204D 
0.9999999946730537D 
0.9999999989958596D 
0.9999999998268141D 

0.9999999999737648D 
0.9999999999991659D 
0.1000000000003167D 
0.1000000000003867D 
0.1000000000004142D 
0.1000000000005115D 

00 0.1112107122641016D 
00 0.9145465290677766D 
00 0.7245087590634542D 
00 0.5492147378176965D 

00 0.3959361369563590D 
00 0.2699903096575698D 
00 0.1733584569022934D 
00 0.1044301711933930D 

01 
01 
00 
00 
00 

00 
00 
00 
00 

00 0.5884905029559881D-01 

00 0.3095379362802304D-01 
00 0.1517036399321181D-01 
00. 0.6918247270753256D-02 
00 0.2932544923138562D-02 
00 0.1154412461402519D-02 

00 0.4217264542212354D-03 
00 0.1428864892765967D-03 
00 0.4487654564845384D-04 
00 0.1305947442842973D-04 
00 0.3520034178472342D-05 

00 0.8785038983643211D-06 
00 0.2029509793444975D-06 
00 0.4338982542142417D-07 
00 0.8583529424554144D-08 
00 0.1572242307020353D-08 

00 0.2766056552012288D-09 
00 0.4395167933392727D-10 
01 0.7029429704709523D-11 
01 0.1593260600584493D-11 
01 0.3583023509204903D-12 
01 -0.8557528262266267D-11 
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Remarks on Convergence 

1 1 ~ ~ 2  2 5 x 5 3  3 1 x 1 4  4 ~ x 2 5  

21 30 38 44 
21 28 36 41 
21 26 34 39 
21 25 32 37 
21 25 29 33 

In the application of the method of the foregoing section the integration 
involved in each of the iterations 

5 5 x 2 6  

53 
42 
39 
29 
28 

is an approximate one. 
depends on how accurately ~i(t,~~,~,$~,j, 

The accuracy by which $i,j+l(t) can be evaluated 
. . ,4n,i) is approximated, o r ,  

M I  

equivalently, on the degree M of the polynomial 

approximate ~$i (t,bl ,j , . . . ,$n,j). 
of convergence of the functions qi,, .(t) may be influenced by M. Table I11 
suggests that this is indeed the case. Numerical results showed that an 
M L 11 is sufficient to provide an approximate solution to 10 decimal places 
f o r  example I. However, the number of iterations required, f o r  a fixed conver- 
gence criterion E, may vary with M. Note that the number of iterations 
needed for the first two intervals remained fixed for each M. On the other 
hand, the number of iterations required for convergence over the remaining 
intervals decreases with increasing M. The same table shows, in the case of 
5 5 x 5 6, that there is a rather sharp decrease in the number of iterations 
when M is incremented only by 1. 

Bl!tkTk(t) used to 

It is to be expected that the rate 
k= 0 

11 
12 
13 
14 
15 

TABLE 111.- THE INFLUENCE OF M ON THE CONVERGENCE OF ALGORITHM I. 

17 
17 
17 
17 
17 

Each entry of this table indicates the number of iterations required by 
algorithm I to solve equation (48) having the indicated M and interval of 
integration. The convergence criterion is E = 0.5~10-~*. Since the approxi- 
mate Chebyshev coefficients agree to 10 decimal places for all M L 11, the 
solution for each M is also accurate to 10 decimal places. 

An observation one can make is that with an appropriate choice of M 
computing time used for solving a particular problem can be minimized. When 
an appropriate choice of M 
larger M than is deemed necessary f o r  a prescribed accuracy (e.g., using 

the 

is not available it may be prudent to use a 
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M = 15 instead of 11 for example I) to insure convergence within a moderate 
number of iterations. In the next section it will be shown how the conver- 
gence of the iterative process can be accelerated for a fixed 
improving the efficiency of algorithm I. 

M, thereby 

Acceleration of Convergence 

To economize computation, two methods consisting of "modification of rows" 
and "modification of columns" are proposed in this section to accelerate the 
convergence of the algorithm. 
requized by these methods must be given. 

Before we proceed further, the basic tool 

Steffensen's sequences.- Consider first the modified sequence associated 
with the single-point scalar iteration function 
erties: (a) the equation y = f(y) has a solution y = u; (b) the third deriva- 

yj+l = f(yj) having the prop- 

tive f"'(y) is continuous in a neighborhood of u 
sequence be denoted by 

with ftrr(u) # 1. Let the 

. .  

. .  
* .  

The first member yio) of the sequence is an initial approximation to 
The other members are evaluated in the order indicated by the formulas 

u. 

It can be shown that the sub-sequence [ y ir)} having any prescribed yo is 

quadratically convergent (see, e.g., ref. 9). Therefore, the application of 
equations (52) and (53) would effectively result in accelerating the conver- 
gence of the iteration function 
only linearly convergent. Equation (53) is known as Aitken's formula, but the 
scheme consisting of equations (52) and (53) in the evaluation of the sequence 
(52)  is due to Steffensen (see ref. 9). 

yj+l = f(y.) whose regular sequence may be J 

21 



Consider next t he  more general case of t h e  s ingle-point  vector  i t e r a t i o n  -+ 
f defined by 

-+ 
where y i s  the  N-dimensional vector 

j 

+ - + +  + +  
it is  a l so  assumed t h a t  t he  vector  equation 
and 
f ( y ) .  However, even without knowing prec ise ly  what the  des i rab le  proper t ies  
should be,  we can, a t  l e a s t  formally, generate a sequence of  vectors  analogous 
t o  the  sequence associated with the  s c a l a r  i t e r a t i o n  funct ion.  This is accom- 
pl ished by recomputing a new To a f t e r  every N + 1 sucessive appl icat ions of 
(54). 

y = f ( y )  has a so lu t ion  y = u, + +  
f ( y )  has certain des i rab le  proper t ies  analogous t o  the  scalar function 

Let t he  sequence be denoted by 

. . .  

. . .  

Define two NxN matrices AYg and A2Y0 by 

with 

-f -t 
The f i rs t  member yo of  the  sequence (55) i s  an i n i t i a l  approximation of u.  
The o ther  members a r e  evaluated i n  the  order indicated by the  vector  
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equations 

(j = 0,1, . . . ,N) (56) 

In particular, when N = 1, equations (56) and (57) reduce to (52)  and 
(53) , respectively. 

Steffensen's iteration procedure for the vector case has not been 
investigated fully from the theoretical point of view. 
the sub-sequence ;Ak) , for a large number of cases has been found, as in the 
scalar case, to be quadratically convergent (see ref. 9). Consequently, 
unless the regular sequence generated by equation (56) is already quadrat- 
ically convergent, it would be less rapidly convergent than that of 
Steffensen's. Even in the case when the former is divergent, the latter has 
been found to be convergent in many cases. 

However, in practice, 

1 1  

The remainder of this section discusses the utilization of Steffensen's 
sequence in the acceleration of  convergence for algorithm I. 
here is equally applicable to algorithm 11. 

The approach 

m I@;, j (tk))j=o Recall that we have from algorithm I the sequences 

(i = 1,2, . . . ,n;k = 0,1, . . . ,M+2), where each iterate of each sequence 
is generated at step 4 of the same algorithm. These sequences can be put in 
the form of a single sequence of rectangular arrays 

[+i,k, j] = 

P 

(58) 
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where 

The (M + 2) column, being 

all j. 

approximation to $! (t) evaluated at tk-, . Specifically, according to the 
way algorithm I was constructed, this array has the elements 

+'  . (t) evaluated at t = -1, remains unchanged for i,J 
Each entry of the initial array [+i,k,l] is the value of the initial 

1 I 

associated with the initial approximation 

+i,,Ctl = ni (i = 1,2, . . . ,n) 
However, from the point of view of convergence, it may be advantageous to 
interrupt periodically the computation of the iterative procedure and restart 
it by supplying to the algorithm a new initiating array [$ 1. The con- i,k, 1 
struction of Steffensen's sequence provides a clue as to how this process of 
iteration modification can be applied effectively. An approach to the solu- 
tion of this problem might be attempted by first forming various sets of 
sequences corresponding to different groupings into disjoint subsets of all 

i,j,kl* the entries of the array [+ 
we consider the four sets of sequences consisting of 

In particular, for ease of implementation 

(a) The corresponding elements 

(j = 1,2,, . . . ,n; k = 1,2, . . . ,M+2) (59) 

(b) The total array +i,j ,k] c 
(c) The corresponding rows 

(d) The corresponding columns 

If certain assumptions, which may o r  may not be true, are made about each 
of these sequences, the initial array [+i,k,l] can be modified by any one of 
four different ways. 
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Modification of individual entries.- If each sequence of equation (59) 
can be assumed to be iterates of a single-point scalar iteration function, 

] can be modified by Aitken's each element of the initiating array [ J I  i,k,l formula (53) one at a time. Thus, 

For cases 
only failed to hasten convergence but caused the algorithm to diverge. 
is not surprising because too much information is lost due t o  our disregarding 

n 2 2, however, numerical results show that such a procedure not 
This 

implicitly the fact that each element of an array of is a func- 

tion of  all the elements of the preceding array. 
special case of modification of columns to be discussed in a later paragraph. 

The case with n = 1 is a 

Modification of the total array.- In contrast to the method of modifica- 
tion of the last paragraph, the entire rectangular array [J,i,j,k] can be con- 
sidered as an iterate of a single-point sector iteration function of 
components. 
means of the matrix equation (57). This fully takes into account the depen- 
dence property mentioned in the last paragraph. Nevertheless, such a scheme 
could hardly be considered feasible from the standpoint of efficient computa- 
tion for the following reasons. Even if n and M are moderate in size, the 
matrix to be inverted is of a high order n(M + 1). Furthermore, the first 
modification cannot be effected until after n(M + 1) + 1 iterations by which 
time the algorithm has already converged o r  will have converged to a solution 
after a few more iterations. The case for n = 1 is more tenable but it sim- 
plifies to the method of modification of rows to be discussed presently. 
abbreviations MR and MC in the sequel denote the methods of  modification of 
rows and modification of columns, respectively.) 

n(M + 1) 
Then the initiating array [JIi,j,k] can be modified in toto by 

(The 

In view of what is said in the preceding paragraph, any acceleration of 
convergence procedure involving either modification of individual entries o r  
the total array must be ruled out. 
intermediate in complexity between the two previous ones mentioned are found 
to be effective in the acceleration of convergence of algorithm I as well as 
algorithm I1 of the following section. 

On the other hand, the methods MR and MC 

Modification of  rows ( M R ) . -  Suppose each of the sequences (60) is an 
iterate of a single-point vector iteration function of M + 1 components. 
Then the initiating array [JIi,k,l ] can be modified one row at a time as 
follows : 

Let [$i,k, j 1 (j '= 2,3 ,  . . . ,M+3) be the M + 2 rectangular arrays 
generated by the algorithm for an initiating array [$i,k,l]. For each i, set 
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Compute +('+') yo by means of the matrix equation (57). The ith row of the 
new initiating array is then formed by setting 

(k = 1,2, . . . ,M+1) 

After all the rows of 
restarted by returning to step 5 of algorithm I. 
be bypassed until [qi,kY2] has been generated in the following iteration. 

are already quadratically convergent within 
tion, MR modification, in many instances, substantially reduces the number of 
iterations required for convergence. 
more than once. 

[ ~ l ~ , ~ , ~  ] have been modified, the iterative process is 
The testing at step 8 should 

Numerical results suggest that unless the sequence of rectangular arrays 
M + 2 iterations with no modifica- 

It is rare when modification is needed 

Since the methods MR and total array modification coincide for n = 1, 
the latter method can be considered as a special case of the former in this 
instance . 

The feasibility of MR as a convergence acceleration procedure lies in 
the fact that it does not have the complicating features of total array modi- 
fication, and unlike entry-wise modification it evidently does make sufficient 
use of the history of  previous iterations to be effective in the acceleration 
of convergence. 

The following method provides another and possibly more effective 
procedure in the acceleration of convergence for both algorithms I and 11. 

Modification of columns (MC).- Since MC modification is also inter- 
mediate in complexity between the first two methods discussed, it possesses 
the desirable features of MR modification. Moreover, when n is smaller 
than 
initiating array [+i,k,l 3 by the former rather than the latter method. The 
validity of the statement will become evident in the ensuing discussion. 

M, as often is the case in practice, it may be preferable to modify the 

The assumption made here is that each of the M + 1 sequences (61) are 
generated by a single-point vector iteration function of n components. Mod- 
ification in this case is carried out after every 
use of the n + 2 rectangular arrays [+i,j,k] (j = 1,2, . . . ,n+2) saved in 
storage. Each column (specifically the kth) of the initiating array is 
re-evaluated by setting 

n + 1 iterations by making 

(j = 1,2, . . . ,n+2) 
and determining ;Ar+') 
question is then replaced with new entries by setting 

by means of the matrix equation (57). The column in 
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- - (r+1) 
'i,k,x Yi,o (i = 1,2, . . . ,n) 

None 
MC 
MR 

The iterative process, after every column of [ I / J ~ , ~ , ~  ] has been thus modified, 
as in the case of MR modification, is restarted at step 5 of algorithm I. 

3 ~ x 1 4  4 ~ x 5 5  5 5 x 5 6  Total 

38 (5.16) 44 (6.00) 53 (7.32) 135(18.48) 
19 (3.42) 18(3.30) 14 (2.52) Sl(9.24) 
25 (4.50) 15 (3.06) 15 (3.12) 55(10.68) 

The remarks made for MR modification about the testing at step 8 is 
also applicable here. 

Since M is usually set larger than n in practice, to achieve a 
desired accuracy, the MC method, besides saving storage allows modification 
to take place sooner and more frequently than modification by the 
When this occurs, numerical results show that convergence is accelerated more 
strongly than by MR modification. 

MR method. 

A comparison of the rates of convergence (in terms of number of itera- 
tions and machine time applied to the solution of example I) for iteration 
with MR and MC 
It shows that both MR and MC methods substantially reduced the number of 
iterations and machine time required for convergence. 
the total number of iterations and the total machine time over all of the 
indicated intervals for MC 
MR. This should not, however, mislead us into precluding MR modification as 
a tool in the acceleration of convergence. 
that whenever both methods work, MC 
conceivable that acceleration of convergence in certain cases may fail for 
modification and work well for MR modification. For specific examples a 
proper combination of methods (with o r  without modification) may optimize 
the computation time required. 

modification as well as no modification is given in table IV. 

It also shows that both 

modification is significantly less than that of 

Although numerical results show 
modification works better; it is quite 

MC 

Each entry of the table indicates the number of iterations required by 
algorithm I to solve example I for the indicated method of modification and 
interval of integration. 
corresponding iteration is given in parentheses. 
is 

The machine time in seconds on the IBM 7094 for the 
The degree of approximation 

M = 11 and the prescribed convergence error is E = 0.5~10-~O. 
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An Alternate Procedure 

Instead of using equations (42) and (43) ,  it is sometimes preferable from 
the point of view of faster convergence to construct an algorithm to solve a 
system of n first-order differential equations based on the equations 

with 

Oi,,(t) 5 '7i (i = 1,2, . . . ,n) (43 1 
These equations differ from equations (42) and (43) in that the most 

recent information is used at each step. 
how the specialization of (62) serves as the basis for a more efficient 
algorithm to solve an 

It will be shown in the next section 

nth-order differential equation. 

INTEGRATION OF AN nth-ORDER DIFFERENTIAL EQUATION 

An nth-order differential equation can be expressed as a system of n 

nth- 
first-order differential equations. 
solving a system of first-order equations can be employed to solve an 
order differential equation (see, e.g., example I). However, in so doing we 
may be performing many more operations which are otherwise unnecessary if the 
solution of 
a system. 
be explained in the ensuing discussion. 

Consequently, numerical methods for 

nth-order differential equation were found without changing it to 
This is true at least for the case of the Chebyshev series and will 

Let the nth-order differential equation to be solved assume the form 

(63) - 1 < t 5 1  dn)w = $(t,$,4d - - * ,$ (n-l)) ' 
with the initial conditions 

$(i) (-1) = 'li (i = 0,1, . . . ,n-1) (64) 
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To provide the basis for the construction of the algorithm for the 
solution of an nth-order differential equation, define 

$,(t) = +(n-l)(t) 

cp2(t) = @-2)(t) 

. , . . . . . . . 
$n(t> = +(t> 

Then equations (62) and (43) specialize at once to the equations 

with 

03 

The sequence of functions ( @ j  (t)) (as its counterpart 1 4iy (t)), of 
j = o  j = O  

eqs. (42) and (43))  is expected to converge uniformly to a function @(t) sat- 
isfying equations ( 6 3 )  and (64) on the closed interval [-1,1]. Note that 
unlike the case where an nth-order differential equation is treated as a sys- 
tem of n first-order differential equations, the integration involved in 
each of equations (65) except the first is applied to the derivatives of the 
current iteration. Numerical results show that this gives algorithm I1 a 
clear advantage over algorithm I in terms of the number of iterations required 
to solve an 
(see example 11). Furthermore, if the Chebyshev series of 

nth-order differential equation for a given convergence error 
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is available, the n integrals of (65) can be obtained readily by making use 
of the relation (S19) between the Chebyshev coefficients of the function and 
those of its derivatives. Hence, if an algorithm similar to algorithm I is 
constructed for the nth-order differential equation, the modified interpo- 
lating polynomial is used only to approximate the 
iteration. This is in contrast to algorithm I which utilizes QN(t) n times 
in the approximation of first derivatives. Since the computation of the modi- 
fied interpolating polynomial takes up the bulk of the time per iteration, the 
difference in time spent solving the same differential equation may be 
considerable. 

nth derivative during one 

Algorithm I1 (for an nth-order equation) 

The construction of the algorithm for an approximate solution of an nth- 
order differential equation, as in the case of algorithm I, is based on the 

W 

assumption that the sequences of functions ( +ii)(t)) (i = 0,1, . . . ,n) 
j = o  

can be represented accurately by polynomials of sufficiently high degree. Let 

bk (i)Tk(t) and ’ Bii)Tk (t) 

denote, respectively, 

(i = 0,1, . . . ,n) 

For notational simplicity, equality between the respective expressions (67) 
and (68) is assumed to hold. The approximate solution of equation (63) with 
initial conditions (64) for a prescribed convergence error E is obtained as 
follows : 

1. Set 

k F  tk = cos -- M + l ,  k = 0 , 1 ,  . . . ,  M + l  

(This computes the M + 2 points where TM+l(t) has an extremum.) 

2.  Set 

bo(i) = 2qi (i = 0,1, . . . ,n-1) 

(i = 0,1, . . . ,n-1; k = 1,2, . . . ,M+n-i) 
(This is equivalent to the initial approximations +(i)(t) 2 qi 

(i = 0,1, . . . , n-I).) 
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3.  Compute 
M+n-i - -  ~ 

’ b(i)Tr(tk) (i = 0,1, . . . ,n-1; k = 0,1, . . . ,M+1) 4ii) (tk) = r 
r= o 

4. Compute 

(k = 0,1, . . . ,M+l) 
5. Compute (using eq. (€327)) 

r= o 

(We have here approximated $cn)(t) by the Mth degree polynomial 
J +1 

k= o 

where according to theorem B6 

f o r  a sufficiently large M.) 

6, Compute (by means of theorem B4 in appendix B and eq. (A31)) for 
i = n-1,n-2, . . . ,O 

u (i) = M+n- i - 1 
k+n-i 2(M + n - i) 
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E k= 1 

(We have in this step obtained the n integrals 

M+n- i M c' BLi)Tk(t) of E' BF)Tk(t) (i = 0,1, . . . ,n-1)) 
k= O k= 0 

7. If lBLi) - bk (n) I < E for all k ,  we are through. 

8. Otherwise, set 

(i = 0,1, . . . ,n; k = 0,1, . . . ,M+n-i) 
and return to step 3 .  

(n)(t) +,(")(t) o step 7 
$ 0  Note: To take into consideration the case when 

should be skipped until the second iteration. 

Example I1 

To provide a basis for comparison for both algorithms, we shall solve the 
differential equation (48) by algorithm I1 f o r  the same prescribed convergence 
error and subintervals as in example I (i.e., E = 0 . 5 ~ 1 0 - ~ ~  and xo = 0, x1 = 1, 
. . . , X6 = 6). 

For each subinterval [ x ~ - ~ , x ~ ]  (r = 0,1, . . . ,6 ) ,  let X = ct + d, 

Thus, 
+ xr+l). 

1 1 c = -(x 2 r+l - xr), d = 4 X r  2 

(i = 0,1,2,3) F(i)(x) = Fli)(ct + d) = 2 i (I (i) (t) 

Substitution into (48) then yields 

the form required by the algorithm. 
value problems corresponding to the six subintervals. 
used for each subinterval are determined by the solution at the end point of 

The solution is found as six initial- 
The initial conditions 
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t h e  previous subinterval except the  first where 

O I X 5 1 1 < X < 2  , 2 < x 5 3  

11 10 17  - 24 
1 2  10 17 23 
13 10 17 23 
14 10 17 23 
15 10 17 23 

( i  = 0,1, . . . ,n-1) +( i )  (-1) = - 1 FCi) (0) 
2i 

3 5 x 5 4  4 5 x < 5  

33 39 
31 37 
28 34 
26 27 
27 28 

A comparison of computer r e s u l t s  obtained by algorithm I1 with t h a t  of 
algorithm I shows agreement t o  10 decimal places.  

t h a t  the  coef f ic ien ts  BLi) ( i  = 0,1, . . , ,n) exhibi t  no change t o  10 

decimal places f o r  M I 11. Consequently, from t h e  discussion i n  the  
preliminary analysis  sec t ion  the approximate Chebyshev s e r i e s  satisfies the 
d i f f e r e n t i a l  equation with an e r r o r  bound of order 

Computer r e s u l t s  a l s o  show 

E = 0 . 5 ~ 1 0 - ~ ~ .  

A comparison of tab les  I11 and V reveals  t h a t  t h e  number o f  i t e r a t i o n s  
required f o r  t h e  solut ion of the aforementioned d i f f e r e n t i a l  equation i s  
consis tent ly  l e s s  f o r  algorithm I1 than f o r  algorithm I .  

TABLE V.-  THE INFLUENCE OF M ON THE CONVERGENCE OF ALGORITHM I1 ~1 
26 

Each entry of t h i s  t a b l e  indicates  the  number of i t e r a t i o n s  algorithm I1 
required t o  solve equation (48) having the  indicated M and i n t e r v a l  of in te -  
grat ion.  The convergence c r i t e r i o n  is  E = 0 . 5 ~ 1 0 " ~ ~ .  Since the  approximate 
Chebyshev coef f ic ien ts  agree t o  10 decimal places f o r  a l l  M L 11, the 
accuracy of the solut ion f o r  each M i s  good t o  10 decimal places .  

Remarks on Convergence 

Since a polynomial is used t o  approximate 

the convergence of algorithm 11, as i n  the  case of algorithm I ,  may be inf lu-  
enced by the  degree of the  approximating polynomial Examination of 
t a b l e  V shows t h a t  while the  number of i t e r a t i o n s  needed f o r  convergence f o r  
the  f i rs t  three i n t e r v a l s  remains e s s e n t i a l l y  unchanged, the  number of i ter-  
at ions i n  the  remaining three  i n t e r v a l s  required f o r  convergence i s  essen- 
t i a l l y  a decreasing function of M. Thus by a judicious choice of M t h e  
computing time spent f o r  a p a r t i c u l a r  problem may be minimized. However, 
when such a choice is  unavailable,  it i s  probably b e t t e r  t o  pick a higher M 

M. 
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than is thought necessary so that convergence can be achieved within a toler- 
able number of iterations. For example, in the case of example 11, it would 
have been better to pick M = 15 instead of 11. 

It will be shown next that the convergence of algorithm I1 for a fixed 
M can be accelerated by methods already proposed for a system of n first- 
order differential equations. 

Acceleration of Convergence 
co 

Note first that the sequences ( $p)(tk)) (k = 0,1, . . . ,M + 1) 
j=i 

can be considered as a single sequence of one-dimensional array 

('j , i > $ j  ,2, * * s$j,M+2) (j = 1,2, . . .) 

where 

(69) 

Thus if one thinks of (69) as a rectangular array of one row and 
columns, the methods of MR and MC modification proposed for algorithm I can 
also be used in the acceleration of convergence for the 

re-evaluated for every 
MR o r  MC modification is utilized. Since MR modification is applied to a 
single row and MC is actually a modification of individual entries here, the 
number of operations involved compare with that of algorithm I (applied to the 
solution of the same nth-order differential equation) should be considerably 
less. 

M + 2 

nth-order differen- 

M + 2 or  every two iterations depending upon whether 
tial equation. The initiating array ( $1,1,$2,1, . . . ,$M+2,1) is 0 

Table VI shows that the number of iterations as well as the machine time 
required in the solution of example I1 for both methods is consid- 
erably less than that of iteration without modification. 
MC modification has a definite edge over MR modification both in the number 
of iterations and in machine time required for convergence. 
comments applied to algorithm I about not precluding 
tool in the acceleration of convergence should also be heeded in the present 
case. 

MR and MC 
It also shows that 

However, the 
MR modification as a 

Table VI1 is based on the data of tables IV and table VI and illustrates 
the advantage of algorithm I1 over algorithm I in the amount of machine time 
spent on solving the same differential equation. 
whether modification is involved o r  not, the machine time required by 
algorithm I is at least 1-1/2 times that of algorithm 11. 
modification the ratio of the machine time of algorithm I to that of 
algorithm I1 is as large as 2.86. 

It shows that in every case, 

In the case of MC 
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TABLE VI.- A COMPARISON OF THE CONVERGENCE FOR ITERATION WITH 
AND WITHOUT MODIFICATION (ALGORITHM 11) 

3 5 x 5 4  4 5 x 5 5  

None 1.59 1.55 
MC 1.87 2.10 
MR 2.03 1.59 

Each entry of this table indicates the number of iterations required when 

The machine time in seconds on the IBM 7094 
using algorithm I1 to solve example I1 for the indicated method of modifica- 
tion and interval of integration. 
f o r  the corresponding iteration is given in parentheses. 
approximation is 

The degree of 
M = 11 and the convergence criterion is E = 0 . 5 ~ 1 0 - ~ ~  

5 5 x 5 6  

1.84 
2.86 
1.62 

Each entry of this table gives the ratio of the machine time of 
algorithm I to that of algorithm I1 based on tables IV and VI. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., 94035, May 15, 1969 
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APPENDIX A 

CHEBYSHEV POLYNOMIALS 

This appendix is included to facilitate the discussion of the 
approximation of functions in terms of Chebyshev polynomials. It pro- 
vides the minimum of the necessary working tools for most numerical work 
involving these polynomials. Most of the properties can be found in the works 
of Rivlin (ref. 10) and Lanczos (ref. 11). Clenshaw’s summation formula for 
Chebyshev series is generalized here for the summation of sequences obeying an 
nth-order linear recurrence relation (see theorem Al). 

Some Properties of Chebyshev Polynomials 

Definition.- The polynomial of degree k defined by 

Tk(t) = COS(k arc COS t) , - 1 s t s l  (A1 1 
is called the Chebyshev polynomial of the f i r s t  kind of order 
Chebyshev polynomial. 

k or simply a 

As an immediate consequence of this definition we have 

with 

To(t) = 1, Tl(t) = t ’ 

From the recurrence relation (A2) we can generate Chebyshev polynomials 
up to any order n by setting k = 2, 3, , . . , n. 

By the change of variable t = cos 0 one can demonstrate that the 
m 

sequence of Chebyshev polynomials Tk(t) is orthogonal on [-1,1] with 
}k=~ 

respect to the weight function w(t) = (1-t2)-’l2, that is, 

Property A2. Eor any two Chebyshev polynomials Tm(t) and Tk(t), the 
following conditions hold. 

0 if m # k  

Tm(t)Tk(t) (1 - t2)-lI2 dt= {! if m = k # 0  (A31 

if m = k = O  
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Consequently, any r e s u l t s  deduced f o r  general  c l a s s e s  of orthogonal 
polynomials a l s o  hold f o r  Chebyshev polynomials. 

Property A3 (Orthogonality with Respect t o  Summation). 

Let 

t j  = cos j, N + l  ( j  = 0,1, . . . ,N+1) (A4 1 

If Tm(t)  and Tk(t)  are any p a i r  of Chebyshev polynomials of orders  zero 

through N + 1, then 

if m = k = O  o r  N + l  

i f  m # k  

N+ 1 

z " T m ( t j ) T k ( t j )  i f  m = k # 0 or  N + 1 (A5 1 
j = o  

Furthermore, i f  Tr( t )  is a Chebyshev polynomial of any order  

(A6 1 N + 1 i f  r = 2s(N + 1) , s = 0,1,2,  . . . 
0 i f  r # 2s(N + 1)  , s = 0,1,2,  . . 

N+ 1 

x " T r ( t j )  = 

j =o  

(2j  + 1)lr 
2k t = cos ( j  = 0,1 ,  . . . ,k-1) 

and extrema (-1) j  a t  

j.rr ( j  = 0,1,  . . . ,k) (A8 1 k t =  

Property A3 toge ther  with equat ion (A8) is  instrumental  t o  the  d iscuss ion  
The following proper ty  is  use- of t he  "Modified In te rpola t ion"  of  appendix B. 

f u l  i n  t he  i n t e g r a t i o n  of a func t ion  represented by a s e r i e s  of Chebyshev 
polynomials: 

Property AS. 



Summation of Series of Chebyshev Polynomials 

We consider next the summation of a finite series of Chebyshev 
polynomials of the form 

N 
1 

SN(t) = BkTk ( 
k= o 

where Bk are constants. The evaluation of SN(t) can be .efficiently 
performed by particularization of the following theorem (see also ref. 12): 

Theorem Al. If 
N 
L .  

akUk S =  

where Uk obeys the nth-order recurrence relation 

then S can be evaluated by the formula 

s = couo + 

k= 1 J=1 

where co,cl, . . . , c ~ - ~  are determined from the recurrence formula 

- 
‘N+n = . . . -  - - ‘N+1 = ‘N+2 

n (A141 
Ck = ak + ‘j ,k+jck+j (k = N,N-1, . . . ,O) 

j=1 

The theorem can be established as follows: Replace ak in equation (All) 
by equation (A14) so that 

N n 
r 

j=1 
S =  t k  - 

k= 0 

or 
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N 
S =  

Set t ing  now k + j = m i n  t h e  double sum and noting t h a t  

k = N + l , N + 2 , .  . . , N + n , w e h a v e  
Ck = 0 fo r  

N n N 

S =  CkUk - 'j ,m%% j 
k= o j=1 m = j  

o r  by inver t ing  the  order of  summation for the  double sum, one obtains  

The co l lec t ing  of  terms i n  cm then y i e lds  

s = couo 4- 'j ,mum-$ c m  

But by equation (A12) 
n 

r u  = O  f o r m 2 n  urn- j ,m m - j  
j = 1  

This proves t h a t  equation (A13) holds. 

Useful spec ia l  cases:  

1. For n = 1, we have 

so S of (A13) becomes 

s = couo 
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2. For n = 2 ,  we have 

so S of equation (A13) becomes 

The following proper t ies  are appl icat ions of the  spec ia l  case of n = 2 
t o  sums of Chebyshev polynomials: 

N Property A6. If 

k=O 

then a l so  
B O  S ( t )  = - + C l t  - c2 
2 

where c1 and c2 are generated by t h e  recurrence r e l a t i o n s  

(This formula follows from eq. (A21) and the f a c t  t h a t  

Property A7. If N 

k= o 
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then a l so  

S ( t )  = 5 + C 1 ( 2 t 2  - 1) - c2 2 

where c l  and c2 are generated by t h e  recurrence r e l a t i o n s  

Property A8. If 
N 

k= 1 

then a l so  

S ( t )  = (2t2 - l ) (Cl  - c2) 

where c1 and c2 a r e  generated by the  recurrence r e l a t i o n s  

(The formula follows from equation (A21) and the  fact  t h a t  

T,k+l (t) = (2t2 - l)TZk-l ( t )  - T2k- CJ(~)) 

Formulas f o r  evaluating SN(t) o f  equation (A10) a t  spec ia l  values of t 
a r e  given as follows: 

Property A9. If 
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then 
1 k 

N 

sN(-l) .= (-l) Bk 
k= 0 

and 

k= o 
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APPENDIX B 

THE CHEBYSHEV SERIES AND APPROXIMATION BY MODIFIED INTERPOLATION 

The Best Approximating Polynomial. and the Chebyshev Series 

Let f(x) be a continuous function defined on a closed interval [a,b] and 
let E be a prescribed positive number. The existence of a polynomial P(x) 
for which 

is given by a well-known theorem of Weierstrass. 
cept of the best approximating polynomial to facilitate later discussion. 
(For a detailed discussion of the best approximating polynomial and its prop- 
erties, see ref. 13.) 

We introduce here the con- 

Definition.- Let DN denote the set of polynomials of degree I N. A 
polynomial P*(x)EDN having the m a x i m  residuaZ: 

is called a bes t  approximating poZynomiaZ of degree N of f(x) in the 
Chebyshev sense. 

Definition.- The quantity 

is called the smallest deviation of the polynomials of Dn from f(x) or the 
minimax. 

The best approximating polynomial always exists and is unique. It is 
completely characterized by the theorem of P. L. Chebyshev. 

Theorem B1. Let f (x) be a function continuous on [a,b] . Then any 
is the best approximating polynomial if and only if polynomial 

there exist 
P(x)EDN 
N + 2 points 

for which 

with the function f(x) - 
Xi. 

A useful consequence 

P(x) alternating in sign at consecutive values of 

of the above theorem is: 
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Corollary.- If f(x) is continuous on [a,b] and if for any Q(x) in DN 
the function f(x) - Q(x) alternates in sign on a set of N + 2 distinct 
points 

then 

Let $(t) be continuous on the closed interval [-1,1]. We shall be 
interested in the expansion 

m 

where Tk(t) are Chebyshev polynomials (see appendix A) defined by 

Definition.- In the particular case where 

the series (B9) is known as the Chebyshev series for 
cients Ak are called Chebyshev coefficients. (See refs. 10 and 13 for a 
detailed treatment of expansion in Chebyshev series, and of certain relations 
between the best approximating polynomial and the Chebyshev series.) 

$(t), and the coeffi- 

The following exhibits a large class of functions which have uniformly 
convergent Chebyshev series expansions: 

Theorem B2.- If $(t) satisfies the H6lder condition, that is, if there 
exists constants M and a such that, for all tl and t2 in [-1,1] 

I4(tl) - m 2 1 1  I Mltl - t21a (a  ’ 0) (B12) 

then $(t) can be expanded in a uniformly convergent Chebyshev series. (For 
efficient computation, however, the given function should have stronger prop- 
erties such as differentiability. 
Chebyshev series, it may be necessary to provide such properties by suitable 

Consequently, prior to expansion in 
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transformations o r  subdivision of the  in t e rva l  of de f in i t i on . )  

Let the  p a r t i a l  sum formed by the  first N + 1 terms of the  Chebyshev 
series of a function $ ( t )  be denoted by 

N 

and t h e  maximum e r r o r  of sN(t) 

we note here  t h a t ,  s ince  SN(t )  
most degree N, the  p a r t i a l  sum 

k= o 

bY 

- SN(t) I (B14) 
- 1 L t l l  

i s  a l inear  combination of polynomials a t  

S N ( t ) € D ~ .  

The following theorem gives an important inequal i ty  between the  minimax 
e r r o r  EN($) and the  e r r o r  oN($): 

Theorem B3 (A. Lesbesque) .- If $ ( t )  is  continuous on [-1,1], then 

ON($) 5 (3 4- log N)EN($) (B15) 

The above inequal i ty  means t h a t  f o r  p r a c t i c a l  purposes the  truncated 
Chebyshev s e r i e s  is j u s t  as  good as  the  bes t  approximating polynomial. 

Some usefu l  i nequa l i t i e s  f o r  a function $ ( t )  which is expandable i n  a 
uniformly convergent Chebyshev s e r i e s  are: 

A usefu l  r e l a t i o n  between the  Chebyshev coe f f i c i en t s  of a function and 
the  Chebyshev coe f f i c i en t s  of i t s  der iva t ive  i s  given by: 

45 



Theorem B4.- Let $ ( t )  be defined on [-l,l]. If $ ' ( t )  is  integrable ,  
then 

where Go) and 4') are Chebyshev coef f ic ien ts  o f  @ ( t )  and 4 '  ( t ) ,  
respect ively.  

(The v a l i d i t y  of eq. (B19) can be demonstrated by making the change of  
var iab le  t = cos 9 i n  eq. (B11) and then in tegra t ing  by p a r t s . )  

Approximation by Modified Interpolat ion 

Let f (x)  be continuous on [a,b] and l e t  DN denote the  set  of a l l  

polynomials of a t  most, degree N. Recall t h a t  t h e  b e s t  approximating poly- 
nomial of 
P*(x)EDN f o r  which 

f (x)  as defined i n  the  preceding sec t ion  i s  the  polynomial 

I t  has a l s o  been s t a t e d  t h a t  the  necessary and s u f f i c i e n t  condition f o r  a 
polynomial 
e x i s t  i n  [a,b] a t  least 

P(x)EDN t o  be a b e s t  approximating polynomial i s  t h a t  there  

N + 2 points  

f o r  which 

If(xi) - P(xi) l  = max If(x) - P(xi)l = E ( i  = 1 , 2 ,  . . . ,N+2) 
azxzb 

with f (x)  - P(x) a l t e r n a t i n g  i n  s ign a t  consecutive values of xi. In view 

of t h i s  and the  fact t h a t  TN+l(t) assumes i ts  extrema (-1)J a t  the points  

j = 0,1, . . . , N + 1  jr t = cos - j N + 1 '  

it is easy t o  see t h a t  the  following holds: 

Lemma.- If 

N+ 1 
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then the polynomial 

is the best approximating polynomial of at most, degree N to GN+l(t), and 
the function f3N+1TN+l(t) assumes its extrema (-1) j BN+l at the points 

The interpolating polynomial PN+l(t).- Attention is now turned to the 
interpolating polynomial used by Clenshaw in reference 3. 
of it is a basic tool of the algorithms of this report. 
assumes the form 

A modified version 
His polynomial 

and interpolates a given function +(t) at N + 2 points of  t, given by 
equation (B22). Thus the coefficients Bk of PN+l(t) can be determined by 
solving directly the linear system 

1 1  
N+ 1 

B T (t.) = $(tj) ( j  = 0,1,2, . . . ,N+1) 
k k  J 

of N + 2 equations in N + 2 unknowns. However, these equations can best 
be solved by taking advantage o f  the orthogonality property of Chebyshev 
polynomials with respect to summation. 
of equations (B24) by 
2. 

First multiply each one of the systems 
Tm(tj) and then divide the first and last equations by 

Hence, upon adding the resulting equations, we have 

j = o  k=o j=O 

Changing the order of summation yields 
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and thus, by equation (AS), 

N+ 1 E'' @(tj)Tk(tj) B k = N + l  
j=o 

(k = 0,1, . . . ,N+1) 

Since 

the coefficient Bk can be written also as 

We note here that equation (B27) is more desirable than (B25) from the point 
of view of computation. Since Bk is a finite series of Chebyshev poly- 
nomials evaluated at tk, it can be readily calculated by means of Property A6. 

Some important properties of the approximating polynomial Pn+l(t) are 
given in the following theorem. 

Theorem B5.- If a function +(t) is continuous on [-1,1], and PN+l(t) 
is the approximating polynomial defined by equations (B23) and (B27), 
then for each k co 

(B28) Bk = *k + (AZr(N+l)-k + A2r(N+1)+k) 
r= 1 

where Ak are the Chebyshev coefficients of +(t), and 

Equation (B28) can be demonstrated to hold by means of  equations (AS) and 
To prove (B29) note that by the lemma at the beginning of the section (A6). 

k= O 

is the best approximating polynomial of maximum degree 
residual function P 

N to PN+l(t). The 
(t) - QN(t) = (1/2)BN+1TN+l(t) assumes its extrema N+ 1 
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(-l)j(BN+1/2) at the points 
since +(t) coincides with PN+l(t) at the same N + 2 points, the residual 

Recall that if f(x) is continuous on [a,b] and if for any QN(x) in DN the 
residual function 

a < x 1 < x 2  
Hence it follows that (1/2) iBN+l I E N ( + ) .  This proves equation (B29) and 
also the theorem. 

t = cos[jT/(N + l ) ] ,  (j = 0,1, . . . ,N+l). Now 
j 

function +(t) - QN(t) also assumes the values (-1) j (BN+1/2) at these points. 

f(x) - QN(x) alternates in sign on a set of distinct points 
< . . . < x  N+2 5 b with If (xi) - QN(xi) I = M, then M c EN(f). 

The modified interpolating polynomial QN(t).- The polynomial PN+l(t) is 
an interpolating polynomial having the N + 2 extrema of TN+l(t) as the 
points of interpolation. Let P (t) denote the interpolating polynomial hav- 
ing N + 1 extrema of TN(t) as the points of interpolation. We discuss next 

N 

the modified interpolating polynomial 
term of  P (t); that is, 

QN(t) formed by truncating the last 
N+ 1 

and also point out why 
polynomial. 

QN(t) is preferred over PN(t) as an approximating 

Consider first the maximum deviation of PN+l(t) from SN+, (t) , the first 
N + 2 terms of the Chebyshev series. Writing 

N+ 1 

k= O 

and taking absolute values one obtains 

But we have 

k= 0 

by equation (B28) the inequalities 
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Add the 
indexes to yield 

N + 2 equations and sum the right member 

k= 0 

It follows from inequalities (B31) and B(33) that 

according to ascending 

k=N+2 

k=N+2 

together with inequalities (B17) and (B33) yields the error bound for PN+l(t) 

We consider now the modified polynomial QN(t) formed by the first N + 1 
terms of PN+l (t). 
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it follows e a s i l y  from (B32) t h a t  
00 

On the  o ther  hand, we have by replacing N + 1 of inequal i ty  (B35) by N 

m m 

Hence it can be seen from inequa l i t i e s  (B36) and (B37) t h a t  the  maximum e r r o r  
f o r  PN(t) for  s u f f i c i e n t l y  la rge  N can be two times l a rge r  than t h a t  of 

QN(t). Moreover, s ince  

we have from the  f a c t  t h a t  lTN+l ( t )  I s 1 and the  inequal i ty  (B35) t h a t  

But 

Consequently , 

Note t h a t  s ince  

- 
by (24), the  res idua l  function $ ( t )  - QN(t) a l so  assumes t h e  values 

. (B39) 

(-1) j (BN+1/2) a t  N + 2 poin ts  given by (B22). 



Thus if 

k =N+ 2 

is small relative to (1 /2)  IBN+l I (and this is often the case in practice), we 
have 

and QN(t) closely approximates the bes t  approximating polynomial of $(t). 
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APPENDIX C 

FORTRAN I V  SUBROUTINES FOR ALGORITHMS I AND I1 

Subroutine AL A L G l  

Ident i f ica t ion  

AL ALG1,  Chebyshev Ser ies  Integrat ion of a System of n First-Order Nonlinear 

FORTRAN I V ,  Double-Precision Subroutine 
Dif fe ren t ia l  Equations 

Purpose 

This subroutine i s  used t o  generate an approximate Chebyshev series solut ion 
f o r  a system of n f i r s t -o rde r  nonlinear d i f f e r e n t i a l  equations with n i n i -  
t i a l  conditions.  The d i f f e r e n t i a l  equations a re  of t h e  form 

with the  i n i t i a l  conditions 

(pi(-l) = n i  (i = 1 , 2 ,  . . . ,n) 

The approximate Chebyshev series solut ion and der iva t ives  are provided i n  the  
form of the  f i n i t e  series 

M+l-P 

k= 0 

where Tk(t)  are Chebyshev polynomials defined by 

Tk(t)  = cos(k cos-’ t )  , - 1 l t l l  

The accuracy of the  approximate so lu t ion  depends on the  convergence e r ro r  E 

and the  degree of  polynomial approximation M prescribed by the  user .  When 
both E -+ 0 and M -t m, t he  approximate Chebyshev ser ies  so lu t ion  approaches 
t h a t  of the i n f i n i t e  Chebyshev series expansion (see main body of t he  repor t  
f o r  choice o f  E and M and the  estimation of e r r o r s ) .  
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Usage 

The routine is 

CALL ALGl 

where 

N (=n) 

K I N  

M 

ETA 

E P S N  

KIT 

T R  

P H I  

XR 

xs 

entered via the statement 

(N, K I N ,  M + 1, M + 2 ,  ETA, E P S N ,  K I T ,  TR, P H I ,  XR, X S ,  B,  IC, 
NER, D E R I V )  

is the number of first-order differential equations. 

is an integer code used to indicate the method of  computation desired: 
K I N  = 0 ,  for straight iteration, (see algorithm I ,  page 13). 
K I N  = 1, for iteration with modification of columns (see page 26). 
K I N  = 2 ,  for iteration with modification of rows (see page 25). 

is the degree of polynomial approximation used to represent the deriva- 

tives q t )  = q w p 4 p  * * ,+J. 

is a double-precision array of 3n locations. The first n locations 
are used to store the n initial conditions rii (i = 1,2, . . . ,n) 
in the order of ascending i. The remaining locations are used 
internally by the subroutine. 

is the convergence error E prescribed by the user and is a double- 
precision variable. 

is the maximum number of iterations allowed by the user. 

is a double-precision array of 
storage f o r  the subroutine. 

M + 2 locations reserved as working 

is a double-precision array reserved as working storage for the 

2n(M + 2) for K I N  = 0 
n(n + 3) (M + 2 )  for K I N  = 1 
n(M + 4)(M + 2)  f o r  K I N  = 2 .  

subroutine. The number of locations allocated are 

is a double-precision array of n(4n + 2)  locations reserved exclu- 
sively as working storage for the case with K I N  = 1. XR is a dummy 
double-precision variable for the cases with K I N  = 0 and 2 .  

is a double-precision array of  (M + 1)(4M + 6) locations reserved 
exclusively as working storage for  the case with 
dummy double-precision variable f o r  the cases with 

K I N  = 2. X S  is a 
K I N  = 0 and 1. 
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B is a double-precision three-dimensional array of dimension 
(M + 2) x N x 3.  
(M + 2) x N 
of $f(t) with 

for i = I = l , 2  , . . .  , n ; k = K = O , l , . . . , M + l  

The first two rectangular arrays of dimension 
are used to store the approximate Chebyshev coefficients 

B('! stored in B(K + 1, I, 1) 
k, 1 

B(l? stored in B(K + 1, I, 2) 
for i = I = l , 2 , .  , . , n ; k = K = O , l , .  . . , M  
The remaining locations are used internally by the subroutine. 

k, 1 

IC is the number of iterations executed by the subroutine to achieve 
convergence. 

NER is the error code. NER = 0 is a normal return; NER = 1 indicates that 
the number of iterations had exceeded KIT. 

DERIV is the name of a user supplied subroutine for the computation of the n 
first derivatives @! (t) (see Derivative Subroutine below). The name 
DERIV (or  whatever name the user chooses) must appear in an EXTERNAL 
specification statement in the calling program, 

1 

Derivative Subroutine 

A subroutine for the computation of the first derivatives 
(i = 1, 2, . . . , n) must be supplied by the user and must be of the 
following format: 

$f(t) 

SUBROUTINE DERIV (N, T, PHI, PSI) 
DOUBLE PRECISION T, PHI, PSI 
DIMENSION PHI (N) , PSI (N) 
PSI(1) = . . 
PSI(2) = . . . 

PSI(N) = . . . 
RETURN 
END 

The symbols of the DERIV subroutine are defined as follows: 

N(=n) is the number of first-order differential equations. 

T is the independent variable. 

PHI is  an array of n locations used to store the values of $i(t) 

(i = 1, 2, . . . , n) in the order of ascending i. 
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PSI is  an array of n locat ions used t o  s t o r e  the  n first der ivat ives  

$:(t) = Ilfi(t, 
of ascending i. 

$ 2 ,  . . . , $n) ( i  = 1, 2 ,  . . . , n) i n  the order 

Other Subroutines Required 

The subroutines 

1. AL CHBY 
2. AL DPIN 

Evaluation of  Solution and Derivatives 

The f i n i t e  s e r i e s  

$1 CP)(t) E y -  E' BEiTk( t )  (p = 0 , l ;  i = 1 , 2 ,  . . ,n) 

k= 0 

may be evaluated as a function of the  independent var iab le  
subroutine AL CHBY (see page 59), which i n  t h i s  case may be accessed v i a  the 
statement 

t by means of 

CALL CHBY (B(1, I ,  P + l ) ,  M + 2 - P ,  T, SUM) 

where 

I ,  M, p a r e  integers  s e t  equal t o  

B(l ,I ,P + 1)  is  the  locat ion of B::. 

T is the independent var iable  t. 

SUM i s  the  evaluated r e s u l t .  

i, M and p,  respect ively.  

Subroutine AL ALG2 

Ident i f ica t ion  

AL ALG2, Chebyshev Series  Integrat ion of an nth-order Nonlinear Di f fe ren t ia l  

FORTRAN I V ,  Double-Precision Subroutine 
Equation 

Purpose 

This subroutine is  used t o  generate an approximate Chebyshev s e r i e s  solut ion 
f o r  an nth-order nonlinear d i f f e r e n t i a l  equation with n i n i t i a l  conditions. 
The nth-order d i f f e r e n t i a l  equation is of the form 

$ ( n ) ( t )  = +( t ,$ ,$ t ,  * * ,$ (n- 1)) - 1 z t L : l  
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with the i n i t i a l  conditions 

( i  = 0,1, . . . ,n-1) 

The approximate Chebyshev solut ion and i t s  der ivat ives  a r e  provided i n  the  
form of the  f i n i t e  series 

M+n- i 

@(j-)(t)  - BLi)Tk(t) ( i  = 0,1, . . . ,n) 

where Tk(t)  are Chebyshev polynomials defined by 

T ( t )  = cos(k COS-' t )  , - l z t < _ 1  k 

The accuracy of t h e  approximate solut ion depends on the c E 

and the degree of polynomial approximation M prescribed by the  user.  When 
both 
i n f i n i t e  Chebyshev s e r i e s  expansion. 
of E and M and the  estimation of errors . )  

vergence e r r o r  

E -+ 0 and M -+ a, the  approximate Chebyshev s e r i e s  approaches t h a t  of the 
(See main body of  the report  f o r  choice 

Usage 

The rout ine is  entered v i a  the statement 

CALL ALG2 (N, K I N ,  M + 1, M + 2,  ETA, EPSN, KIT, TRY PHI, XR, B ,  I C ,  NER, 
NDER) 

where 

N(=n) 

K I N  

is  the  order of the  d i f f e r e n t i a l  equation. 

is an in teger  code used t o  indicate  the  method of computation desired: 
K I N  = 0, f o r  s t r a i g h t  i t e r a t i o n  (see algorithm 11, page 30). 
K I N  = 1, f o r  i t e r a t i o n  with modification of individual e n t r i e s  (see 

K I N  = 2,  f o r  i t e r a t i o n  with modification of rows (see page 3 4 ) .  
page 34) .  

M i s  the degree of polynomial approximation used t o  represent the nth 

der iva t ive  $(")(t)  = Ji(t,+,$', . . ,$ (nl) 

ETA is a double-precision array of  2n locations.  The f i rs t  n c e l l s  are 
used t o  s t o r e  the  n i n i t i a l  conditions v i  ( i  = 0,1, . . . ,n-1) 
i n  the  order of ascending The remaining cells a r e  used in te r -  
n a l l y  by the  subroutine. 

i. 

i s  the  convergence e r r o r  E prescribed by the user and is  a double- 
precis ion var iable .  
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TR 

PHI 

XR 

B 

IC 

NER 

ND ER 

is a double-precision array of M + 2 cells reserved as working storage 
for the subroutine. 

is a double-precision array reserved as working storage for the sub- 
routine. The number of locations allocated are 

(n + 1)(M + 2) for KIN = 0 
(n + 3) (M + 2 )  for KIN = 1 
(M + 2)(M + n + 3) for KIN = 2. 

is a double-precision array of (M + 1)(4M + 6) locations reserved 
KIN = 2. exclusively as working storage for the case with 

dummy double-precision variable for the cases with 
XR is a 

KIN = 0 and 1. 

is a double-precision two-dimensional array of dimension 
(M + n + 1) x (n + 2)  with 

(i) stored in B(K + 1, I + 1) 
for i = I = 0, 1, . . . , n; k = K = 0, 1, . . , M + n - i .  

Bk 

cells are used internally by the subroutine. 

is the number of iterations executed by the subroutine to achieve 
convergence. 

is the error code. NER = 0 is a normal return; NER = 1 indicates that 
the number of iterations exceeded KIT. 

is the name of a user supplied subroutine for the computation of the 
nth derivative Cp(n) (t) (see Derivative Subroutine below). The name 
NDER (or whatever name the user chooses) must appear in an EXTERNAL 
specification statement in the calling program. 

Derivative Subroutine 

A subroutine must be supplied by the user to compute the nth-derivative 
$(n)(t) and must be of the following format: 

SUBROUTINE NDER (N, T, PHI, PSI) 
DOUBLE PRECISION T, PHI, PSI 
DIMENSION PHI (N) 
PSI = , . . 
RETURN 
END 

The symbols of the NDER subroutine are defined as follows: 

N(=n) 

T is the independent-variable t. 

PSI 

is the order of the differential equation. 

(n- 1 I) is the value of nth derivative Cp(n) (t) = J/ , $ , + I ,  . . . , Cp 
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PHI is an a r r ay  of n locat ions used t o  s t o r e  t h e  values of 41 '~)  ( t )  
(i = 0 ,  1, . . . , n - 1) i n  the  order of ascending i. 

Other Subroutines Required 

1. AL CHBY 
2. AL DPIN 

Evaluation of Solution and Derivatives 

The f i n i t e  series 

M+n- i 

' Bii)Tk(t) (i = 0,1, . . . ,n) 
k= O 

may be evaluated as  a funct ion of t he  independent va r i ab le  t by means of  
subroutine AL CHBY (see below), which i n  t h i s  case may be accessed v i a  the  
statement 

CALL CHBY (B(1, I + l ) ,  M + 1 + N - I, T, SUM) 

where 

I, N, M a r e  in tegers  t h a t  take on the  values of i, n, and M y  respect ively.  

B( l , I+ l )  i s  the  locat ion of Bo (i 1 

T i s  the  independent var iab le .  

SUM i s  the  evaluated r e s u l t .  

Subroutine AL CHBY 

AL CHBY Evaluation of A F i n i t e  Ser ies  of Chebyshev Polynomials 
FORTRAN I V ,  Double-Precision Subroutine 

Purpose 

This subroutine i s  used t o  evaluate a f i n i t e  s e r i e s  of the  form 

? 
N 

S( t )  = BkTk(t) 9 - 1 < t 5 1  
k= 0 
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where Tk(t) are Chebyshkv polynomials defined by 

I 
T (t) = cos(k c0s-l t) k 

Usage 

This subroutine is entered via the statement 

CALL CHBY (B, N + 1, T,  SUM) 

where 
\ 

B is a double-precision array of N + 1 locations used to store Bk in the 
order of ascending k. 

N 

T i s  the independent variable t and is a double-precision variable. 

SUM is the sum S[t) and a double-precision variable. 

is the order of the highest order Chebyshev polynomial. 

Method [See eq. (A23).) 

Subroutine AL DPIN 

Identification 

AL DPIN, Matrix Inversion 
FORTRAN IV, Double-Precision Subroutine 

Purpose 

This subroutine is used to calculate the inverse of a square matrix A. 

Usage 

This subroutine is entered via the statement 

CALL DPIN (A, N, KDET) 

The parameters are defined as follows: 

A is a double-precision two-dimensional array of dimension N x N used to 
store elements of the matrix A. 
found in the array A. 

Upon return, the inverse A-I will be 

N is the order of matrix A. 
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KDET is an error code. KDET = 0 is a normal return; KDET = 1 indicates that 
A is singular. 

Method 

Jordan's method of elimination is used to calculate A - l  (see ref. 14). 

61 



m 
9 
OI 
rl 

-I 

z 
Y 

n 
a 
e. 

W 
W 
J 

J 
e 

LLI-z 

z u w  
oa v) 

D n  

w w  - 
C d  
W J C  
> - a w  
v)- 

I-N 

w z  
a z w  

a 
m 
m 
Y 
0 

I 
m 
z 
vf 
W 

i4 
I 
W 

m 
Z 

v) 

le. 

U 

n 

a 
., 

E! 

'2 
N, 
N 
lL 
a 

c 
W 

a 

., 
U 

n, 
0, 
7 

a o c u c t w  
cta - W Z  
o w z n o  

m 
,+ 
e - 
a 

- a  

I- 
W 
m 

dI- 
w w  - 
2 -  0 
0- * 
\ N  H 

- u  - 
0 a z  4 
O * -  I- 

z 
Y - - + rl i c  I r i  N 

62 



P- co OI 04 N m * Cn 9 IC co OI O d W  m .a ln9 r-03 m 0 d N m .a In at- co m O d  N m *in 9 r- co o\ O d  N m 
*Q.aCn~Cn~~M~CnCnCn999999999~P-P-r-P-P-~r-r-r-~cocococoW~cocococoo\mOIm 
00000 00 0 0 0  00 00 00 0 0 0 0  00 00 O Q  00000 0 0 0 o o 0 0 0 0  000 00 0 0 
0000000000000000000000000000000000~~00000000000 
dddddddddddddddddr lddr ldr -4ddddddddddd4ddr lddr ldddddd w w w w w w w w w w w w w w w w w w w w w o w w w ~ w w w w o w w o w w w w w w w w w o m ~ w  
J J A A 1 1 A A 1 A A A 1 J J A A J ~ J ~ A 1 A A ~ 1 A ~ 1 ~ 1 1 1 J 1 A A ~ ~ J ~ A J ~ ~ ~  a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a  

Y 
0 * 
(u m 

d 
d 

0 
I- 

0 - - 
(3, m 

a 
0 - 0  

N 
LL 
\ 

rl 
c 

+ 
? 
U 

m 
- N  
m u  
m Z  

- 4 -  
- Y  

a r  
~ - a  
w It 

d + 
7 

m 
Y 

* 
N 
V 
Z 
n 
- e . 4  

d d  
Y 
-0 

l 
-0 
(UW 

m i -  

e 

d 
00 
d 

0 
I- 

W I - ~  
N - w z  u r-4-a z Y * .  o m z - w -  o w w m ~ r l  + I l U *  II m 

nr-4-z-u 
.Y I wr-4w 
d - a *  
II e4 11 v).-.7 
Z w Z +  * -  
L 3  m a d -  
Y O U  r -LL 
m n m a m -  

N u  - 
Z 
v) 
Q 
w 
I- w w  
* 3  

Y Z  
1- ut- -z 
L O  -4u 

cu 
0 
d 

* 

r-4 
U zo 
-0 

N +  

Yr-4 
.I- 

42 
r -0  

11 
OSL 

II a 
d .  

n o  

- 
Z - 
m 
II z, 
dd 
c If 

m 
Y Y  

NFJ 
Yo3 z 
-0 
m n  
N 
I- 

d o 0 -rlw w 
I -$4- - 
w m N  m 
2 d Q  v d 

a d  * d  * w - O d U  d 
0 w w + o  u o  0 0  * d u e  
n I - > I - 7 + - N  

? 
o m z m z  c-( I 4  

LOLLOLL - - - 7 1 1  II u o  
- W U W U ~ - ~  

U r  
Z d  U 

5 
d 
n 
rl 
Y 

N 
9 

0 
n 

u-u 

d>d 

d r (  7 x 7  u 
N N  
4Jln 
A 

z m z  

II m u 
.r- c 

oao n u n  
N4 
B *  

5 
d 
II 
Y 

N 
P- 

O 
n 

rl 
O C n  
II d 

0, 
CL 
w o  
Z W  

4 
Q 

0 c- 
0 
W 

0 
11 
Y 
0 

e 
0 
11 
v) 

r u  
101 a n n  
N O  
ln9 

d N 0  
W c o 9  

N 

0 
0 
r( 

63 



0 0 0  0 0 
rc N 

N r l 6 - i  m m 

64 



In 
I- 
d 

0 O o \ N  N m rl 
in o \oa  QD Eo In * Q * d  m m d 

65 



N 
W 
-1 

-1 
a 
a 
U 
I- 
LL 
m 
c. 
64 

cn 
9 
OI 
rl 

-1 

cz 
c. 

a 
a 
.h 

W 
W 
-I 

e 

CIC 

Z 

-1 
1 z 
0 z 
cr 
W 

IY 
0 
I 
I 
I- z 
Z 

3 
Y 

n 

a 
tL 
0 

Z 
0 

I- 
a- 

c( 

.1 

CIC 
X 

7 

=J- r 
0, 

0, 
d 
a 
E -  
O d  

- 6 .  

U - W . I  
W Z  N 

e. 
0 
0 + 
n * 
rl 
\ 
d 

.L 

0 
0 + 
n 
e 

N 

N 

e 
0 
0 + a 
e 
m 

e 

rl + 
Z 
II 
rl 
a 
z 

N + 
Z 
II 
N 

Z 
a 

mF4 
+ I  zz 
II II 
m r l  
zz a r  

m 
-I- = 

d +  
m + z  
+ z u  
Z - m  
m II 5: 

r-z 

ii u n  
a z a  

rl 
LL + 
H 
0 
11 

IT 
0 

d 
a 

d 
tL 

I 
rl II + -  
J N  
II E 
Jc  
a -  

0 
I I  
7 
0 

a3 
rc 
N 

uuuu 

66 



7 
Z 
n 

Y 
0 * 
N 
IL 

\ 
- - - - a 
5L 
0 
I N * + 
5: a u 
* N 
N + 
IL ?rL 

O -  Y 

- - 
-% a 

a 
N - 
+ N 
ri + m  
5L arn ., Y N  
9 0. 

5LO = - -#-  

m 
In 
N 

4- Ln 
N 

67 



m 
P- 
N 

0 
I- 

O 
W 

0 

w z 
ZO 
u m  
u m  

* 

m 

- 

- 
N 

z 
-0 

Y N  

I C  

a 

- 
a 0  
A 

d 
P - 2  4- 
N U  0 
-0 m 

0 - 0  
I - N m  

m 2 
O Z O  ' 

0-I-  0 
-d  w I - m o  - 
u r n 1 9  m 

W N m  
I O Q  a m 2  * -  
N O &  
L I - S L  

LL -0 
c r n m  

7 N +  
a + E O  z 2 21 I- 

c;lr 
LL -0 

a + E O  z 2 21 I- 

0 
9 
N 

d 0 4 N m O  0 r( N u m  e 
9 lc m m f - 0  0 0 00 0 
N N m m N m  m m m m  m 

m 0 
0 N 
m 4 

0 e 
4. 

68 



0 
9 
rl 

0 
In * 

m 
0 
4 

0 
n 

CC 
X 
i- 
v) 
I I  
v) 

rl 
Y 

I 

- 
u 

a 
11 
il 
-I 

II 11 
o d a  o 
* u s  m 

7 N  m + rlrl z z 
a 
II 
7 

Z 

0 
t- 

0 o 

in 
rn 

0 
a 

b! 

I 

- 
c.. 

a 
N 

II 
7 

0 
t 

0 
W 

11 
I I  

CC 
w z 

- a: 
3 
W Z  
0 1 W  

i-a 

69 



I- 
N 

z 
0 
Z 
>- 
-1 
0 n 
> 
W 
I 
v) 
>. 
W 

U 

m 
r 

70 



OdNmQInn\DICcOO\ 0 4 N  m Q t n 9 F a 3 O \ O ~ I N m 4 l n 9 + a @ O d  N m  4 0  9 1 C c O C h  O d N m 4 I n 9  
0 0 0000 0 0 0 0 d 4 4  PI d 4 d d  d PI N N N NN NN NN N m m  m m  m m  Kl rr) m m  4 d d 4 4 4 4 
00000000000000000000000000000000000000000000000 
00000000000000000000000000000000000000000000000 z z 2 z z z z z z z z 2 z z z z z 2 z z 2 z z z z z z z z z z z z 2 2 z z z z z ~ ~ z z z z z  
nnnnnnnnnnnnnnnnnnnnnnnnnn~nnnnnnnannnnnnnnnann 
nnnnnnnnnnnnnOanannnnnnnannannannaan~~nnnnnnann 
u u ~ u u u u ~ n u u ~ ~ u u u u u ~ ~ ~ u ~ ~ u u ~ u n u u ~ u ~ u u u u n n u u u u u ~ u  

0 
d 
r- 
0 
t n 

E 
W 
t- * 
1 
I 
3 
-I 
0 
U 
Y 

d + 
E 
3 0  
-19 
O N  o u  

9 - 0  
f i - t -  

0 
W 

n 
H 
w 
t- 
\ 

-1 

In 
0 
d 0 

In 
In 

0 
I- 

O 
?- X 

W 

z n 
u 
0 

0 
W 
d 

W 
a 

l? 

3 

0 
0 < 

I c3 
W 

N 

A-1 

J X  
- W  

W Z  

z II 
- E  
It 3 

I- Cr- + - 3-1 z z  2-00 
000 II L txU 

- 8 .  

L c r  

x n  
n- 

u u n - l u - ~  

4 
d 
II 
-1 

0 
0 
N 

- 1 m Z z c r - r -  
t x ~ o n  II T 

6- 
0 > 

II .L 

a d  
19I-I 
W -  0 

n 
0-  

00 0 
0 9  ln 
N N  m 

na 
0 
ni 

71 



co 
ln 

F a 3 r n O d N r n * L n 9 r -  
4-4 - * ln ln lnmmlnLnLn  
00000000000 
00000000000 z z z z z z z z z z z  
a a a a a a a a a a a  
nnnnnnnannn 

W 
3 
Z 
l-4 

I- z 
0 u 

W 
3 z 
I- z 
0 u 

c( 

d 
I1 
I- 
W 

U 
n w 

w 
n 
Z 
W 

72 



REFERENCES 

1. 

2 .  

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

Clenshaw, C. W.: The Numerical Solution of Linear Differential Equations 
’ in Chebyshev Series. Proc. Cambridge Phil. SOC., vol. 53, 1957, 
pp. 134-149. 

Elliott, David: A Chebyshev Series dethod for the Numerical Solution of 
Fredholm Integral Equations. Computer J., vol. 6, no. 1, April 1963, 
pp. 102-111. 

Clenshaw, C. W.; and Norton, H. J.: The Solution of Nonlinear Ordinary 
Differential Equations in Chebyshev Series. Computer J., vol. 6, 
no. 1, April 1963, pp. 88-92. 

Norton, H. J.: The Iterative Solution of Nonlinear Ordinary Differential 
Equations in Chebyshev Series. Computer J., vol. 7, no. 1, April 1964, 
pp. 76-85. 

Fraser, W,; and Hart, J. F. :  Near-Minimax Polynomial Approximation and 
Partitioning of Intervals. Communications of ACM, vol. 7, no. 8, Aug. 
1964, pp. 486-489. 

Abramowitz, M.; and Stegun, I. A . ,  eds.: Handbook of Mathematical 
Functions with Formulas, Graphs, and Mathematical Tables. National 
Bureau of Standards, U. S.  Dept. of Commerce, 1964, p. 200. 

Tenenbaum, M.; and Pollard, H.: Ordinary Differential Equations. Harper 
and Row, N. Y., 1963. 

Fox, L.: Numerical Solution of Ordinary and Partial Differential 
Equations. Addison-Wesley Publishing Co., Reading, Mass., 1962. 

Henrici, Peter: Elements of Numerical Analysis. John Wiley and Sons, 
1964. 

Rivlin, T. J. : 6ebygev Expansions and Best Uniform Approximation. IBM 
Research Rep. RZ-93, 1962. 

Lanczos, C. : Tables of Chebyshev Polynomials Sn(X) and Cn(X) National 
Bureau Standards, U. S. Dept. of Commerce, Applied Mathematics Series 
9, Dec. 1952. 

Clenshaw, C. W.: A Note on the Summation of Chebyshev Series. Mathemat- 
ical Tables and Other Aids to Computations, vol. 9, no. 51, July 1955, 
pp. 118-120. 

73 



13. Natanson, I. P.: Constructive Theory of Functions (Book I), AEC-tr-4503 
translated from Russian by Office of Technical Services, U. S. Dept. of 
Commerce, 1961. 

14. Fox, L.: An Introduction to Numerical Linear Algebra with Exercises. 
Oxford University Press, N. Y., 1965. 

74 NASA-Langley, 1969 - 19 A-3302 




